Errata

This document attempts to correct and clarify material in "A Practical Guide to Lightcurve Photometry and Analysis". If you think you've found an error or something that needs revision, please send an email to the author

brian@MinorPlanetObserver.com

I won't guarantee that matters of writing style (toe-MAY-toe versus toe-MAH-toe) will be included, but they will be considered.

Chapter 4

On page 34, formula 4.9 should read

$$SNR_{mag} = 1.0857 / SNR_{flux}$$
 (4.9)

Chapter 5

Equations should be modified *not* to use "*" for multiplication. Therefore, something like T_vCI means "the transform T_v times the color index, CI"

Equation 5.1 can be stated more clearly by

$$V = v - k'_{v}X + T_{v}CI + ZP_{v}$$
 (5.1)

where V reduced standard V magnitude
v instrumental magnitude in V filter
k'v first-order extinction in V
X air mass at the time of the observation
Tv transformation for V filter
CI standard color index of star (B–V, V–R, or V–I)
ZPv nightly zero-point for V filter

Equation 5.2 is incorrect. It should read

$$V - v_0 - T_v CI = ZP_v$$
 (5.2)

where v_o instrumental V magnitude, corrected for first order extinction, i.e., $v_o = k'_V X$

For consistency, Equation 5.3 can be modified to

$$\Delta M_{f} = (m_{fo} - m_{fc}) + T_{f} (CI_{o} - CI_{c})$$
 (5.3)

where ΔM_f differential magnitude, filter f

 $\begin{array}{ll} m_{fo} & \text{instrumental magnitude of target, filter } f \\ m_{fc} & \text{instrumental magnitude of comparison, filter } f \end{array}$

T_f transform, filter f

 CI_o standard color index for target, e.g., (V-R)

CI_c standard color index for comparison, e.g., (V–R)

For consistency, Equation 5.5 can be modified to

$$M_f - m_f = T_f CI + [ZP_f - k_f' X]$$
 (5.5)

where M_f catalog standard magnitude, filter f

m_f instrumental magnitude, filter f

T_f transform value, filter f

CI color index, i.e., (B–V), (V–R), or (V–I)

ZP_f zero-point offset, filter f k'_f first order extinction, filter f

X air mass

For consistency and clarity, modify Equation 5.6 to

$$CI_s = (CI_i - k_{ci}'X) + ZP_{ci}$$
5.6

where CI_s standard color index

CI_i instrumental color index

k'ci first order extinction for given color index

 ZP_{ci} zero-point offset for given color index

For consistency and clarity, modify Equation 5.7 to

$$M_r = M_f - M_i - T_f CI$$
 5.7

where M_r Reduced magnitude of star

 $\begin{array}{ll} M_{\rm f} & \quad \text{Catalog standard magnitude of star} \\ M_{\rm i} & \quad \text{measured instrumental magnitude} \end{array}$

T_f transform for filter used

CI standard color index of star, e.g., (V–R)

For consistency and clarity, modify Equation 5.9 to

$$CI = T_{CI}((m_1 - k'_1 X) - (m_2 - k'_2 X)) + ZP_{CI}$$
 5.9

where CI standard color index for (B-V), or (V-R), or (V-I)

m₁ instrumental magnitude of first color of index

k'₁ first-order extinction for first colorX averaged air mass of target field

m₂ instrumental magnitude of second color of index

k'₂ first-order extinction for second color

 T_{CI} hidden transform slope ZP_{CI} hidden transform intercept

For consistency and clarity, modify Equation 5.10 to

$$M_f = m_f - X(k_f' + k_f''CI) + T_fCI + ZP_f$$
 5.10

where $\ M_{\rm f}$ converted standard magnitude, filter f

m_f raw instrumental magnitude, filter f

k'_f first-order extinction, filter f (not color index)

k"_f second-order extinction, filter f (not color index)

X air mass

T_f transform, filter f (not color index)

CI standard color index of the object, e.g., V-R

ZP_f zero-point offset, filter f

For consistency and clarity, modify Equation 5.11 to

$$\Delta m_f = m_{fo} - m_{fc}$$
 5.11

where Δm_f differential magnitude, filter f

m_{fo} instrumental magnitude of the object, filter f

m_{fc} average instrumental magnitude of comp(s), filter f